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We investigate a new type of decision under risk where—to succeed—participants
must generalize their experience in one set of tasks to a novel set of tasks. We asked
participants to trade distance for reward in a virtual minefield where each successive
step incurred the same fixed probability of failure (referred to as hazard). With constant
hazard, the probability of success (the survival function) decreases exponentially with
path length. On each trial, participants chose between a shorter path with smaller
reward and a longer (more dangerous) path with larger reward. They received feedback
in 160 training trials: encountering a mine along their chosen path resulted in zero
reward and successful completion of the path led to the reward associated with the path
chosen. They then completed 600 no-feedback test trials with novel combinations of
path length and rewards. To maximize expected gain, participants had to learn the
correct exponential model in training and generalize it to the test conditions. We
compared how participants discounted reward with increasing path length to the
predictions of 9 choice models including the correct exponential model. The choices of
a majority of the participants were best accounted for by a model of the correct
exponential form although with marked overestimation of the hazard rate. The deci-
sion-from-models paradigm differs from experience-based decision paradigms such as
decision-from-sampling in the importance assigned to generalizing experience-based
information to novel tasks. The task itself is representative of everyday tasks involving
repeated decisions in stochastically invariant environments.
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Decision-making is often modeled as a
choice among lotteries. A lottery is a list of
mutually exclusive possible outcomes, Oi, i �
1, . . . , n, with corresponding probabilities of
occurrence pi, i � 1, . . . , n, such that

�i�1
n pi � 1. A decision maker may, for exam-

ple, be constrained to choose one of the follow-
ing:

Lottery A: 50% chance to win $900 and 50%
chance to get nothing; versus

Lottery B: $450 for sure.

Decision tasks can be divided into classes
based on the source of probability information
available to the decision maker (Barron & Erev,
2003; Hertwig, Barron, Weber, & Erev, 2004).
In the traditional “decision from description”
task—illustrated above—(e.g., Kahneman &
Tversky, 1979), participants choose between
lotteries where the probability of each outcome
is explicitly given.

In a new and growing research area known
as “decision from experience” or “decision
from sampling” (Barron & Erev, 2003; Hadar
& Fox, 2009; Hertwig et al., 2004; Unge-
mach, Chater, & Stewart, 2009; see Rakow &
Newell, 2010 for a review), participants learn
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probabilities by repeatedly sampling out-
comes from multiple lotteries and then decide
which they prefer.1 The participant may, for
example, repeatedly execute Lottery A above
and receive a stream of outcome values $900
and $0, with roughly as many of the former as
the latter. Sampling from Lottery B leads only
to outcomes $450.

With large enough samples, the information
about probability in decision from sampling
converges to that available in decision from
description.2 However, participants in decision
from description and decision from sampling
experiments seem to treat probabilities very dif-
ferently. In decision from description, human
choices deviate from those that maximize ex-
pected utility as if small probabilities were over-
weighted and large probabilities underweighted
(Tversky & Kahneman, 1992). In decision from
sampling, the reverse pattern—small probabili-
ties underweighted and large probabilities over-
weighted—is found (Erev et al., 2010; Hertwig
et al., 2004; Teodorescu & Erev, 2014).

Decision from sampling captures many real-
world situations where explicit probability in-
formation is unavailable but individuals may
“try out” the various choices repeatedly before
committing to a decision. There are, however,
situations where people must make decisions,
probabilities are not given, and repeated sam-
pling is either not possible or undesirable. They
might not, for example, want to learn how to
cross a wide, busy street by trial and error.
However, if people can somehow generalize
their experience with narrow, safe streets by
modeling how their probability of survival var-
ies with traffic density and speed, they are po-
tentially able to estimate probabilities of sur-
vival in novel situations (e.g., high speed traffic)
without direct experience. Generalization ex-
tends the benefits of learning to a wider range of
potential decision tasks.

In decision-from-sampling tasks (Barron &
Erev, 2003; Hertwig et al., 2004), there is—by
design—little basis for generalizing to novel
conditions (lotteries). The focus of research is
on experience—not generalization. If, for ex-
ample, the individual samples Lottery A’s out-
comes from a red deck of cards and Lottery B’s
outcomes from a green deck he has information
concerning the frequencies of possible rewards
from each of the two decks. He has no basis for

generalizing to an unsampled blue deck of cards
representing Lottery C.

In the present study, we introduce a new class
of decision task, “decision from models,”
where—in order to do well—people must gen-
eralize probability information from past expe-
rience to a novel task based on an internal
model of the probabilistic environment. In our
study, on each trial, participants had to choose
between two paths through a virtual minefield
(Figure 1). A fixed number of invisible mines
were randomly and uniformly distributed in the
minefield. The probability of successfully tra-
versing a linear path in the field without running
into a mine is a decreasing exponential function
of path length x (the survival function)3:

P(x) � e��x, x � 0 (1)

The parameter � � 0 is the hazard rate. On
most trials, the participant had to choose be-
tween a shorter, thus safer, path toward a
smaller reward and a longer, more dangerous
path toward a larger reward.4 Surviving the path
they chose would result in the specified reward;
otherwise, they would receive nothing. The par-
ticipant could potentially estimate the hazard
rate � from feedback in the training phase.
Whether he adopts the correct, exponential
model of Eq. 1, though, is a separate question,
one we return to below.

The tasks in the test phase differed only in the
path lengths and values of the lotteries pre-
sented; no feedback was provided. The new
conditions and absence of feedback prevented
the participant from using stimulus-response

1 Later on, we will use the term “decision from sampling”
rather than the more general term “decision from experi-
ence” to refer to this research area and its tasks, to avoid
confusion with other decision tasks that have experience-
based components.

2 One striking result in the decision from sampling liter-
ature is that participants tend to take very small samples
even when they are free to sample as much as they wish
(Hertwig et al., 2004).

3 If the observer takes discrete steps of a fixed size, his
length of survival is a geometric distribution. As the steps
become smaller and smaller, the limiting distribution is the
exponential which we use in the following analysis.

4 On a few “catch trials” participants were asked to
choose between a shorter path with larger reward and a
longer path with smaller rewards. The catch trials were used
to screen out participants as described in the Method sec-
tion.
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mappings or “model free” reinforcement learn-
ing (Daw, Gershman, Seymour, Dayan, &
Dolan, 2011) to complete his choices. He had to
use the information in the training phase to
work out how the probability of survival
changes with path length; that is, the model that
maps probability information from training to
paths of novel lengths in the test phase in Eq. 1.
If he could make effective use of Eq. 1 with an
accurate estimate �, then he could precisely
predict survival probabilities for any path
length.5

We test whether the individual acquires and
makes use of the exponential survival function
of Eq. 1 with correct hazard rate, allowing cor-
rect translation of information from the training
to the test phase. The internal model, analogous
to E. C. Tolman’s cognitive map (Tolman,
1948), would allow people to choose among
novel lotteries that they have never had direct
experience with.

We do not assume that the internal model
would come exclusively from the individual’s
experience in training: In the training phase, we

sought to give participants every opportunity to
infer the correct model, including instructing
them that the mines were randomly distributed
and that the probability of surviving a specific
path depended only on the path length. They
also received feedback that includes display of
the full minefield at the end of each training
trial. And of course they experienced success or
failure in each training trial. Any of this infor-
mation could have contributed to their learning
the correct model.

The task and environment we considered is of
interest in itself. It is an example of a process of
constant hazard: no matter how long an organ-
ism has survived, on its next step it has the same
chance of encountering a mine as it did on the
first. For a process to be a process of constant
hazard simply means the environment is memo-
ryless: the number of success in past attempts
has no influence on the probability of success in
the next attempt given that one has survived
until now.

Of course, repeated choices in many environ-
ments are properly modeled with changing haz-
ard functions: repeated successes in the past
may increase the probability that the next step
will lead to success—or decrease it. Yet—in
many environments—repeated choices can be
approximated as processes of constant hazard
on time or distance or trial. All that is needed
is a plausible basis for assuming that each
successive step in time or space incurs the
same probability of failure: unprotected sex,
clicking on an e-mail from an unknown
sender, darting across a busy street at lunch-
time, moving across a meadow exposed to
predators— or crossing a minefield.

People have been found to be surprisingly
sensitive to the forms of probability distribu-
tions (exponential, Gaussian, Poisson, etc.) they
encounter in everyday life: They can accurately
estimate the distributions of the social attitudes
and behaviors of their group (Nisbett & Kunda,
1985); they can also use appropriate probability
distributions for inference or prediction (Grif-
fiths & Tenenbaum, 2006, 2011; Lewandowsky,
Griffiths, & Kalish, 2009; Vul, Goodman, Grif-
fiths, & Tenenbaum, 2009). We investigate

5 The correct generalizations are somewhat nonintuitive.
If the probability of surviving a path of length L is p then the
probability of surviving a path of length 2L is p2.

Figure 1. Example of the task. Top: Participants in a
virtual minefield chose between a shorter path leading to a
smaller reward and a longer path leading to a larger reward.
The probability of failure with each successive step—the
hazard rate—is constant. Each treasure chest denoted $1.
Middle and bottom: Possible feedback on the chosen path
(success and failure). Feedback was present in the training
phase and absent in the test phase. See Method section.
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whether they adopt the exponential survival
function (constant hazard) when it is appropri-
ate.

Our focus on model-based transfer also dis-
tinguishes the path lottery task from sampling-
based decision tasks that have a similar risk
structure, such as the Balloon Analogue Risk
Task (BART; Lejuez et al., 2002; Pleskac,
2008; Wallsten, Pleskac, & Lejuez, 2005). In
the minefield, every tiny step along the path
incurred a fixed probability of triggering a mine
and the participant need to make use of this
constraint to infer the probability of survival for
novel path lengths in the test phase. In the
BART, participants repeatedly pumped a break-
able balloon to accumulate reward. They re-
ceived an amount of reward for each “pump”
but would lose all reward if the balloon broke.
The decision at any moment was whether to risk
one more “pump” for additional reward. Partic-
ipants were never required to generalize their
knowledge of the probability of failure incurred
by one “pump” to that of an arbitrary number of
“pumps.” Furthermore, in the test phase of the
minefield task there was no feedback, preclud-
ing any trial-by-trial learning strategies and
making the task a rigorous test of model-based
transfer.

We analyzed human choices in the path lot-
tery task to answer two questions. First, were
people’s choices based on the correct exponen-
tial model of probability of survival? If not,
what model did they use? Second, do people
correctly estimate the parameters of whatever
model they assume? That is, if they correctly
adopted an exponential survival function, was
their estimation of the hazard rate (� in Eq. 1)
accurate? Or, if they assumed a model of a
different form, are the parameters of that model
appropriately estimated?

Modeling

Modeling Stochastic Choice

Human choices are stochastic (Rieskamp,
2008): People do not necessarily make the same
choice when confronted with the same options.
To predict the choice behavior in individual
trials, we constructed choice models that are
stochastic.

Denote the pair of path lotteries on a specific
trial as L1: (v, x) and L2: (w, y) where v, w

denote rewards and x, y denote path lengths. In
each choice model, we computed Pr (L2), the
participant’s probability of choosing L2, and
modeled the participant’s choice on the trial as
a Bernoulli random variable with mean Pr (L2)
(Erev, Roth, Slonim, & Barron, 2002). For each
participant, we fitted the free parameters in each
choice model to the participant’s choices using
maximum likelihood estimation (Edwards,
1972; see Supplemental Materials).

Except for the resampling choice models
(that we present later), Pr (L2) is determined by
the normalized expected utilities of L1 and L2
and a free parameter � that reflects the random-
ness in the participant’s choices (Busemeyer &
Townsend, 1993; Erev et al., 2002; Sutton &
Barto, 1998; see Supplemental Materials).

Utility

The utility of a specific monetary reward was
modeled as a power function with parameter
� � 0 (Luce, 2000):

u(v) � v� (2)

Pleskac (2008) has pointed out that the utility
function and probability weighting function in
the task of Wallsten et al. (2005) were not
simultaneously identifiable. We also found that
� and the free parameters in some choice mod-
els could not be simultaneously estimated (see
Supplemental Appendix C online for proof). To
overcome this issue, we treated � in all the
choice models as a constant for each fit (i.e., not
a free parameter in the actual fit) and estimated
each choice model under a range of different
�’s that are typical in the decision-making lit-
erature (Gonzalez & Wu, 1999; Tversky &
Kahneman, 1992). In this way, we could verify
that any conclusions we drew were valid across
the range of utility functions typically encoun-
tered.



v and a longer path of length y toward a larger
reward w. For any specific (v, x) and w, we
estimate the equivalent length ỹ where the par-
ticipant is indifferent between the two options,
that is, �v, x� ~ �w, ỹ� experimentally. We as-
sume an equivalence of expected utilities:

u(v)P(x) � u(w)P(ỹ) (3)

where u(.) is the utility function and P(.) is the
probability of success. Let � � u(w)/u(v) (� �
1 as w � v). Equation 3 can then be written as:

P(x) � �P(ỹ) (4)

When the survival function is specified (e.g.,
Eq. 1), for any specific �, we can compute the
equivalent length ỹ, based on Eq. 4, as a func-
tion of x. The functional form of ỹ against x is
determined by the survival function the partic-
ipant assumed. Conversely, we can use the mea-
sured relationship of ỹ to x to rule out some
possible choice models.

We first describe three choice models, which
differ in their assumptions concerning the sur-
vival function. Their assumptions and predic-
tions are illustrated in Figure 2. We will later
consider additional choice models (notably
models based on resampling) that are motivated
by the observed choice patterns. These will be
introduced in the Results section.

Exponential Choice Model

When the hazard rate is constant, the proba-
bility of success (survival function) is an expo-
nential function of the path length, as indicated
by Eq. 1. The larger the hazard rate �, the riskier
the minefield, and the smaller the probability of
success. Substituting Eq. 1 into Eq. 4 and, tak-
ing logarithms, we have (see Supplemental Ap-
pendix A for derivation):

ỹ � x �
ln�

�
(5)

That is, for any specific choice of �, if par-
ticipants (correctly) assumed the exponential
model, their measured ỹ would be a linear func-
tion of x whose slope equals 1 (Figure 2, left
bottom). Intuitively, if you are indifferent be-
tween traveling 1 cm for $1 and 3 cm for $2,

you should be indifferent between traveling 11
cm for $1 and 13 cm for $2.

Weibull Choice Model

The Weibull survival function (Weibull,
1951) is a generalization of the exponential that
includes smoothly increasing and decreasing
hazard functions6:

P(x) � e�(�x)	
(6)

6 If the participant correctly assumes an exponential sur-
vival function but has a probability distortion in the one-
parameter Prelec form (Prelec, 1998), his survival function
is of the form of a Weibull function. The survival function
is probability versus distance and any distortion of the
survival function can be treated as a form of probability
distortion.

Figure 2. Illustration of three classes of survival models. Top:
Survival functions (probability of success as a function of path
length) assumed by the models. Black (thickest) line denotes an
exponential model. Red (second thickest) line denotes a
Weibull model (� � 1). Blue (least thick) line denotes a
hyperbolic model. Bottom: Predicted equivalent length as
a function of the shorter length in the lottery pair. The left,
central, and right panels denote the predictions of the ex-
ponential, Weibull, and hyperbolic models. Lighter and
darker colors in each panel correspond to a higher and a
lower �’s. See Eq. 1–9. The unit of length is arbitrary.
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When � � 1, it coincides with the expo-
nential. The corresponding Weibull hazard
function is

h(x) � 	�(�x)	�1. (7)

which is an increasing power function when
� � 1, a decreasing power function when 0 	
� 	 1, and constant when � � 1.

The Weibull equivalent length (see Supple-
mental Appendix A for derivation) is:

ỹ	 � x	 �
ln�

�	 (8)

For any specific �, it is a curve that converges
to the identity line when x approaches infinity
(Figure 2, central bottom). The curve is convex
when � � 1 and concave when 0 	 � 	 1.

Hyperbolic Choice Model

There is an evident analogy between our task
of trading-off distance for reward and temporal
discounting (Frederick, Loewenstein, &
O’Donoghue, 2002). The counterpart of con-
stant hazard rate in temporal discounting is con-
stant discount rate. Human decisions on delayed
rewards, however, exhibit a declining discount
rate (e.g., Thaler, 1981), which is well fit by a
hyperbolic model (see Frederick et al., 2002, for
a review; Kirby & Maraković, 1995; Myerson
& Green, 1995; Raineri & Rachlin, 1993).

Analogously, participants may assume a sur-
vival function that declines with distance fol-
lowing a hyperbolic function:

P(x) �
1

1 � 
x
(9)

where 
 � 0 is a parameter of discounting rate,
analogous to the hazard rate � in the exponential
model. The larger the 
, the smaller the proba-
bility of success. Substituting Eq. 9 into Eq. 4,
we get a linear relationship (see Supplemental
Appendix A for derivation):

ỹ � �x �
� � 1



(10)

Recall that � � u(w)/u(v) � 1. That is, the
hyperbolic model predicts a line of a slope

greater than one (Figure 2, right bottom). If you
are indifferent between traveling 1 cm for $1
and traveling 3 cm for $2, you would prefer
traveling 13 cm for $2 to traveling 11 cm for $1.

Method

Apparatus and Stimuli

Stimuli were presented on a 32-in. (69.8 �
39.2 cm) Elo touch screen, using the Psycho-
physics Toolbox (Brainard, 1997; Pelli, 1997).
Figure 1 shows an example of stimuli. Two
paths branched toward the upper left and right
of the screen. Each treasure chest at the end of
a path represented a reward of US$1 for com-
pleting the path. On each trial, 369 invisible
circular mines were independently and uni-
formly distributed at random. For every 1 cm
traveled along a path, there was an approxi-
mately 8% probability of hitting a mine.

Procedure and Design

The experiment consisted of two phases:
training and test. It lasted approximately 75
min.

Training. The purpose of the training
phase was to provide participants an opportu-
nity to familiarize themselves with the task and
estimate the hazard implicit in moving through
the minefield. On each trial, participants chose
between two paths of different rewards and
different lengths: (v, x) and (w, y). They were
informed that mines were randomly distributed
and the probability of surviving a specific path
depended only on the path length.

After choosing, the participant was shown an
animation of her travel along the chosen path. If
she hit a mine, the animation stopped and a
graphical explosion marked the location of the
mine (Figure 1, bottom). Otherwise the anima-
tion continued to the end and the treasure
box(es) flashed. Thereafter all the mines were
briefly displayed as an aid to the participant in
learning the hazard of traveling in the minefield
and the correct form of the hazard function.

During training, the rewards (v vs. w) were $1
versus $2. On each trial, P(x) was randomly
chosen to be between 0.3 and 0.7, and P(y) was
either 3/8 of P(x) or 2/3 of P(x) with equal
likelihood. Accordingly, x was between 4.3 and
14.5 cm and y was 11.8 or 4.9 cm longer than x.
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There were 160 training trials (including 20
screening trials as described below). Partici-
pants were not told that there would be a sub-
sequent test phase with no feedback.

Test. In the test phase, the task was the
same except that feedback was withdrawn and
the values of the rewards changed. There were
two reward conditions (v vs. w): $1 versus $3,
and $2 versus $3. The x value could be 11.1,
8.4, 6.2, 4.3, or 2.7 cm so that P(x) equaled 0.4,
0.5, 0.6, 0.7, or 0.8. For each of the these 10
conditions, y was adjusted by a 1-up/1-down
adaptive staircase procedure of multiplicative
steps and we computed the equivalent length ỹ
as the geometric mean of the x after the first two
reversals. All staircases were interleaved and
terminated after 60 trials, resulting in 10 �
60 � 600 test trials.

It is known that people accurately estimate
length for lines ranging from 1 cm to 1m
(Teghtsoonian, 1965). The path lengths we
chose to use were well within this range, so
there would be little chance that biases would
arise from a misperception of path lengths.

Reward. After each phase, a few trials (one
out of training, six out of test) were chosen at
random and the participant’s was rewarded for
the outcome of traveling along the chosen path.
The sum of winnings on these reward trials was
paid to the participant as a bonus. The partici-
pant knew, at the beginning of training, that
some of the trials would be rewarded in this
way. The participant received US$12 per hour
in addition to the bonus.

Screening. In 20 trials of the training
phase, the shorter path led to a larger reward
and the longer path to the smaller reward. A
participant who selected the higher risk path to
the smaller reward has violated dominance. Any
participant who failed to choose the nondomi-
nant option in more than 4 of the 20 trials was
excluded from the remainder of the experiment.

Participants

Data from 17 participants—4 men and 13
women, aged 18–50, median � 21—were ana-
lyzed. An additional two participants failed the
dominance screening and did not complete the
experiment. We determined the sample size in
advance. No variables or conditions were
dropped. The experiment was approved by the

University Committee on Activities Involving
Human Subjects at New York University.

Results

Choices in the Training

In the training phase of the experiment, par-
ticipants chose between pairs of path lotteries
L1: (v,x) and L2: (w,y). We use L2 to denote the
lottery that had the larger reward and the longer
path length. The larger reward was always twice
the smaller reward ($2 vs. $1). The probability
P(y) of surviving the longer path was 2/3 of the
probability P(x) of surviving the shorter path for
70 trials and 3/8 of the probability P(x) of
surviving the shorter path for an additional 70
trials, all trials interleaved. Figure 3A shows
how the participants’ mean probability of
choosing L2 evolved with experience. In both
conditions, the participants showed a trend to-
ward picking the less risky option L1. This
trend, however, was not significant, according
to a 2 � 5 repeated-measures ANOVA, F(4,
144) � 1.57, p � .19.7

We did not model the choices in training.
What we can infer from Figure 3A, without any
further assumptions on the underlying decision
process, is that there was no significant indica-
tion that the participants were becoming more
and more risk-seeking during their training. We
will return to this point in the Discussion.

Measured Equivalent Lengths in the Test

Before testing participants’ choice behavior
against the choice models we introduced earlier,
we would like to give an overview of their
choice patterns. In the test phase, we measured
the equivalent length ỹ, the length for which the
participant was indifferent between the two op-
tions, that is, �v, x� ~ �w, ỹ�. The mean equiva-
lent length across participants, plotted as dots in
Figure 3B, visually agrees with the pattern pre-
dicted by a survival model of the correct expo-
nential form (Eq. 4): ỹ is a linear function of x
whose slope is one.

The lines in Figure 3B shows the predictions
of the correct model, an exponential model
whose hazard rate was estimated from the ran-

7 The degrees of freedom correspond to 2 P(y)/P(x) con-
ditions by 5, the number of bins of 14 trials each.
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dom samples each participant actually saw us-
ing the maximum likelihood method. The mea-
sured equivalent lengths were smaller than
those predicted by the correct model. Partici-
pants appeared to be highly risk-averse: When
choosing between a shorter path leading to $1
and a longer path leading to $3, at the indiffer-



utility function. Among the three choice mod-
els, most participants were best fit by an expo-
nential model (constant hazard rate); the run-
ner-up was the Weibull model; few participants
were best fit by the hyperbolic model.

The Weibull model is a generalized form of
the exponential model, which allows the hazard
rate to be increasing (� � 1), constant (� � 1),
or decreasing (� 	 1) over distance. We used
the estimated � in the Weibull model to provide
additional information about the hazard-
changing trend assumed by the participant. Fig-
ure 4A shows � for each participant, assuming
u(v) � v: The � of most participants was close
to one (median � 1.16), implying an assump-
tion of constant hazard. Across participants
there was no trend away from constant hazard.

Estimation of hazard. In the training
phase, participants observed whether and where
their chosen paths hit mines. Based on the ran-
dom samples that each participant actually saw,
we estimated the hazard rate �0 that most likely
generated these samples using the maximum
likelihood method. It ranged from 0.069 to
0.091 (median � 0.078); if the participant’s
choices were consistent with this hazard rate we
would judge that she correctly estimated hazard
during training.

Figure 4B shows the estimated hazard rate �
when the participant’s choices were fitted to the
exponential model, assuming u(v) � v, relative
to her true hazard rate �0. Most participants
overestimated the hazard rate. The median ratio
was 3.53, 3.13, and 2.41, respectively, for
u(v) � v, u(v) � v0.88, and u(v) � v0.49.

Learning-Based Choice Models

What would lead participants to overestimate
their hazard rate? We constructed a delta-rule
learning algorithm to estimate the survival func-

tion based on experience in the training phase
(Online Supplemental Materials). The algo-
rithm could potentially result in the observed
overestimation of hazard rate. The basic idea
was that positive and negative outcomes could
be weighted in an unbalanced way. In particu-
lar, the overestimation of hazard rate was im-
plemented as an overweighting of negative out-
comes (running into a mine) compared with
positive outcomes (survival).

The survival function produced by the learn-
ing algorithm is a step function. We call the
choice model based on it the learning-based
nonparametric model. We constructed a second
learning-based model, the learning-based expo-
nential model, whose survival function is sim-
ply a smoothing of the survival function of the
nonparametric model. Remarkably, most partic-
ipants were better fit by the learning-based ex-
ponential model than by the learning-based
nonparametric model (Table 2), providing fur-
ther evidence that participants assumed survival
models of the correct exponential form.

Survival-Based Versus Resampling
Choice Models

Instead of building a one-to-one mapping be-
tween path length and probability of survival, as
implemented in the survival-based choice mod-
els discussed earlier, participants might memo-
rize all the path lotteries they attempted during
training together with their outcomes and use
these instances to estimate the probability of
survival for each test path. However, partici-
pants could not simply recall paths of the same
length as the test path because there was no
exact match from the training set—the path
lengths in the training set were randomly chosen
from a continuum. The issue then is, how can
the participant generalize the information

Table 1
Model Comparison: Constant Versus Changing Hazard Rate

Model df

Assuming u(v) � v Assuming u(v) � v0.88 Assuming u(v) � v0.49

No. of best fits Mean BIC No. of best fits Mean BIC No. of best fits Mean BIC

Exponential 2 12 �404.7 11 �404.7 11 �405.2
Weibull 3 4 �404.9 4 �404.9 4 �405.4
Hyperbolic 2 1 �418.3 2 �417.9 2 �414.3

Note. BIC � Bayesian information criterion. df refers to the number of free parameters in the model. No. of best fits refers
to the number of participants that were best fit by the model.
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gained in the training phase? This information
can be thought of as ordered triples (x, x=, O)
where, x is the path length on a trial, x= is the
path length traveled until a mine was encoun-
tered on a failure trial or the total length of the
path on a reward trial, and O represents the
observed outcome (success or failure).

We explored simple rules based on resampling
from the information gathered during training,
stored in memory. We constructed three resam-
pling models, all of which assume that participants
randomly (re)sample from their training experi-
ence. The models differ in the memory popula-
tions to resample from and the generalization rule
applied to the resampled paths.8

The first resampling model assumed that par-
ticipants resample only from paths that are lon-
ger than the test path. Each resampled path that
ran into a mine before reaching the length of the
test path corresponded to a possible failure for
the test path (the test path would have encoun-
tered the same mine as the resampled path if
placed on the same minefield). The probability

of survival for the test path was computed as the
number of survivals averaged across all the
sampled paths. We call this model the unbiased
resampling model: the estimated probability of
survival for any test path would not deviate
from the true probability of survival in any
systematic way.

To accommodate possible biases in partici-
pants’ choices, we considered two additional
resampling models that involve biased (but
plausible) usage of the resampled paths. Both of
them assumed that resamples could be drawn
from any path the participant has experienced in
training. When the resampled path length was
longer than the test path, the rule was the same

8 In statistics, resampling is a method based on drawing



as in the unbiased resampling model. When the
resampled path was shorter than the test path,
the optimistic resampling model assumed that
the resampled path counted as a success if the
resampled path itself ended in success, that is,
success on the shorter, resampled path was
treated as a guarantee of success on the longer
path; conversely, the pessimistic resampling
model, treated the same case as a failure. The
probability of survival is typically overesti-
mated in the optimistic resampling model and
underestimated in the pessimistic model.

Could participants’ choice behaviors arise
from a resampling process? We compared the
fits of the survival-based choices models with
the resampling models. As shown in Table 3,
only 3 out of 17 participants could be better
captured by a resampling model than by a sur-
vival-based model.

We noticed three facts. First, on average the
resampling models fit much worse to partici-
pants’ choice behaviors than most of the model-
based models did (mean BIC in Table 3). Sec-
ond, the pessimistic resampling model fit better
than the other two resampling models (number
of best-fit participants). Recall that the pessi-

mistic resampling model would yield an under-
estimation of the probability of survival, that is,
an overestimation of hazard rate. Third, for all
the participants who were best fit by a resam-
pling model, the fitted sample size was 1, in
contrast to a typical sample size of 5 for sam-
pling-based decisions (Erev et al., 2010).

The BIC difference between the survival-
based models and the resampling models was
smaller for u(v) � v0.49. At first glance it ap-
pears that the resampling models do “relatively
less poorly” when the utility function is most
concave. This is simply because of the fact that
larger rewards are associated with longer path
lengths (lower probabilities) and failure to gen-
eralize correctly is not punished as much if
larger rewards are scaled to be relatively less
important.

Discussion

In the present article, we introduce decision
from models as a class of decisions parallel to
decision from description (Tversky & Kahne-
man, 1992) and decision from sampling (Barron
& Erev, 2003). It has an experienced-based

Table 2
Model Comparison: Learning-Based Models

Model df

Assuming u(v) � v Assuming u(v) � v0.88 Assuming u(v) � v0.49

No. of best fits Mean BIC No. of best fits Mean BIC No. of best fits Mean BIC

L-B non-parametric 3 4 �411.5 5 �410.8 5 �409.1
L-B exponential 3 13 �407.9 12 �407.9 12 �408.4

Note. L-B abbreviates for learning-based. df refers to the number of free parameters in the model. No. of best fits refers
to the number of participants that were best fit by the model. BIC � Bayesian information criterion.

Table 3
Model Comparison: Survival-Based Versus Resampling Models

Model df

Assuming u(v) � v Assuming u(v) � v0.88 Assuming u(v) � v0.49

No. of best fits Mean BIC No. of best fits Mean BIC No. of best fits Mean BIC

Survival-based 14 14 14
Exponential 2 10 �404.7 9 �404.7 9 �405.2
Weibull 3 3 �404.9 3 �404.9 3 �405.4
Hyperbolic 2 1 �418.3 2 �417.9 2 �414.3

Resampling 3 3 3
Unbiased 1 0 �434.7 0 �434.8 1 �427.9
Optimistic 1 0 �479.7 0 �479.7 0 �479.5
Pessimistic 1 3 �437.9 3 �437.4 2 �430.6

Note. BIC � Bayesian information criterion. df refers to the number of free parameters in the model. No. of best fits refers
to the number of participants that were best fit by the model.
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component but is focused on generalization:
participants need to develop a model allowing
them to generalize probability information from
their past experience to novel tasks. We inves-
tigated whether people could correctly learn an
exponential survival model and base their
choices in novel tasks on the correct model.

To maximize their expected reward, partici-
pants needed to take the information acquired
during training and use it to generalize to novel
conditions. If their memory for this information
is distorted then their choice of model and/or
estimate of its hazard rate parameter could be
affected. But remembering this information ac-
curately is not sufficient to guarantee that they
pick the correct model or correctly use it to
generalize.

We found that most participants made
choices consistent with a survival model of the
correct exponential form: The exponential
model fit better to participants’ choices than the
Weibull model and the hyperbolic model.

Prelec and Loewenstein (1991), and Green
and Myerson (2004) suggested a number of
parallels between decision under risk and inter-
temporal decision. The correct exponential
functional form provided better fits to partici-
pants’ data than the hyperbolic form found in
the temporal discounting literature. If risk in our
task were exchangeable with temporal delay,
we would have expected a hyperbolic discount-
ing of distance (i.e., hyperbolic survival func-
tion) in the minefield. However, hyperbolic in-
ternal models were favored by fewer than one
eighth of the participants.

Evidence in favor of the correct assumption
of the exponential form also came from a model
comparison with a nonparametric model. We
“piped” the participant’s training experience
through a specific learning algorithm and found
that, if the resulting survival function was then
smoothed to approximate an exponential func-
tion (no parameter added), it would provide a
better fit for most participants than that of the
survival function originally learned. That is,
choice models that assumed internal models of
the correct exponential form better captured
participants’ choices than those that assumed no
specific functional forms.

We further verified that participants’ choices
in the test could not be reduced to a resampling
process that is analogous to decision from sam-
pling but based on resampling from memory

(Erev et al., 2010). The performance of most
participants were better accounted for by choice
models that rely on a survival function than by
resampling models. Even for the few partici-
pants who may have depended on resampling,
the sampling process was based on very small
samples. The sample size was typically 1, even
smaller than the number of samples (5) found
in decision-from-sampling tasks (Erev et al.,
2010). This result echoes Vul et al.’s (2009)
claim that a sample size of one is efficient for
inference from probability distributions.

But most participants did not base their
choices on the correct model exactly: they over-
estimated the hazard rate of the exponential
survival function. They did not go as far as they
should go when offered a larger reward. Ac-
cording to participants’ average response in the
$1 versus $3 condition, the expected gain of the
shorter path was only 49% of that of the longer
path. We noticed a similar “risk-averse” out-
come in the BART: Their participants pumped
the balloon fewer times than would maximize
expected gain (Lejuez et al., 2002). When the
optimal number of pumps was 64, participants
on average pumped only 37.6 times (Wallsten et
al., 2005).

The BART and our path lottery task, put
together, shed light on this overestimation of
hazard. Wallsten et al. (2005), in their modeling
of the BART, attributed it to an incorrect prior
belief that would be corrected by experience.
Our results cast doubt on this explanation. Since
the hazard rates of both tasks were arbitrarily
chosen by the experimenter, why should people
have a prior hazard rate in both tasks that is
higher than the true? Moreover, if participants
in the path lottery task did have an overestima-
tion of hazard before the task but were able to
correct it through experience, we would expect
an increasing trend in their probability to choose
the more risky option (L2) during training. This
was not the case (Figure 3A). We conjecture
that participants’ overestimation of hazard re-
flects an improper estimation of probability in-
formation from their experience and not simply
lack of experience.

It is natural to expect people to correctly
estimate both the correct functional form and
the correct parameters (as in Griffiths & Tenen-
baum, 2006) or neither. Mozer, Pashler, and
Homaei (2008) pointed out the possibility that
the seemingly accurate human predictions for a
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specific distribution may be based on a few
memorized samples of the distribution. A sim-
ilar possibility can hardly be true for our deci-
sion task. If we assume that participants’ mem-
ory of samples was faithful and that they
combine sample information correctly, their de-
cisions should not systematically deviate from
the predictions of the true hazard rate. Con-
versely, if their memory of samples were dis-
torted, there would be no reason to assume that
the form of the distribution would be unaf-
fected. And as we demonstrated earlier, resam-
pling models did not provide good fits to par-
ticipants’ choices. Of course, we did not test all
possible resampling models and could not ex-
clude the possibility that a different generaliza-
tion model based on resampling such as the
similarity-based sampling model of Lejarraga
and Gonzalez (2011) might work better than the
three sampling models we tested. However, we
see no way to develop a sampling-based model
that could account for the coexistence of the
correct functional form and the overestimation
of hazard.

Two basic approaches to learning a specific
functional relationship are (1) to rely on a set of
hard-wired base functions or (2) to use associa-
tive learning free of functional forms (McDaniel
& Busemeyer, 2005). The disassociation of
learning of the form and the parameter of the
hazard function in our task, however, poses
something of a challenge for associative learn-
ing for the similar reason we discussed above
for the sampling approach. We conjecture in-
stead that the exponential (or an approximation
to the exponential) is one of the hard-wired
functions in the cognitive “repertoire” of func-
tions permitting extrapolation and interpolation.
Selection of a particular function (exponential
or otherwise) is then seen to be analogous to
contour completion in human perception
(Metzger, 2006). We have argued that processes
of constant hazard are appropriate models of
many repeated tasks in everyday life, consistent
with the claim that the exponential is hard-
wired.

We conjecture that participants were able to
choose the correct form of model to use simply
based on their understanding of the minefield
and possibly a few trials of experience. There is
evidence that in their use of probability infor-
mation people take into account how stochastic
events or processes are generated physically

(C. S. Green, Benson, Kersten, & Schrater,
2010; Pleskac, 2008). However, people also
stick to particular probabilistic models in spite
of extensive exposure to contradictory evi-
dence. For example, people incorrectly assume
an isotropic model of their motor error distribu-
tion after 300 trials of exposure to the vertically
elongated true distribution (Zhang, Daw, & Ma-
loney, 2013). In the BART (Lejuez et al., 2002),
the probability of breaking the balloon with the
next pump increased with the number of pumps,
but most participants were better modeled as
assuming a constant hazard rate (Wallsten et al.,
2005).

In sum, the previous findings allow us to
claim decision from models as a new class of
decisions that are distinct from decision from
description and decision from sampling. People
do make choices that generalize to novel tasks
using models that allow them to translate expe-
rience into accurate probability estimates asso-
ciated with the novel tasks.

The major goal of the present study was to
evaluate decision from models at the computa-
tional-theory level in Marr’s scheme (Marr,
1982, p. 25). In addition, a process model is
needed to account for the patterned choice be-
haviors we have observed, in particular, how
people interpolate and estimate hazard rate as a
function of path length and why they sometimes
get it wrong.

There are many open questions in this new
class of decision tasks. For example, our results
do not enable us to ascribe participants’ devia-
tions from optimality (maximizing utility) to
errors in learning (training phase) or choice (test
phase). Further work is needed to elucidate the
source of error: what is learned versus how it is
used. Another untreated problem is probability
distortion. As we noted previously, any distor-
tion of the survival function is equivalent to
applying a probability distortion function to the
correct, exponential survival function.

Last of all, turning a finite set of observations
into a predictive mechanism for an infinite num-
ber of possible cases is the problem of induc-
tion. An exciting direction for future research
would be to compare tasks with different, cor-
rect generalization functions (such as minefields
with nonuniform distributions of mines) to test
human ability to generalize correctly.
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